

Performance evaluation of acceleration of convolutional layers on OpenEdgeCGRA

Nicolo Carpentieri¹, Juan Sapriza², Davide Schiavone², Daniele Jahier Pagliari¹,

David Atienza², Maurizio Martina¹, Alessio Burrello¹

¹Politecnico di Torino, Italy ²EPFL, Switzerland

Outline

- Motivation
- Hardware Platform: HEEPsilon
 - X-HEEP OpenEdgeCGRA
- Methods
 - Input channel parallelism
 - Output channel parallelism
 - Weight parallelism
- Results
- Discussion

Motivation

- Growing Demand for CNNs in edge devices domain
- Needed for low-power, high-performance, and highly reconfigurable solutions

- ASIC offer zero reconfigurability
- GPUs consume significant power and occupy large area
- FPGA has high latency for reconfiguration time

- Programmable hardware
- Low latency for reconfiguration time

How do CNNs perform on time-multiplexed, small, ultra-low-power CGRAs?

 \rightarrow Studying different mapping strategies on an Open-Source CGRA

HEEPsilon: X-HEEP + OpenEdgeCGRA

X-HEEP: Ultra-Low-Power Host Platform

Configurability

- 1. RISC-V core
- 2. Coprocessor interface
- 3. Peripherals
- 4. Interrupt controller
- 5. Accelerator interface
- 6. Power manager
- 7. Bus topology
- 8. Number of banks

OpenEdgeCGRA

- **4x4** grid of Processing Elements (PEs) interconnected in a torus arrangement.
- Each PE includes
 - An ALU
 - ✓ Register files $(4 + 1 \times 32 b)$
 - Private instruction memory (32 inst) and executes instructions sequentially.
- Each column includes a DMA r/w port
- Supports diverse kernels with arithmetic, logic, shifts, and **conditional operations**.

HEEPocrates: First Silicon Prototype

Methods

IM2COL technique

2

2

2 8

9

0

Ox

- Used HWC format for data organization.
- Ensures sequential memory accesses.
 - **Requires** additional memory

Direct convolution

- Used **CHW format** for data organization.
- More overhead when transitioning to a new output row.
- Does not require additional memory

Mappings explored

Three different mappings methods have been developed:

• Input channel parallelism

• No stationarity, assign each PE a different input channel

• Output channel parallelism

• Output stationary, assign each PE a different output channel

• Weight parallelism

Weight stationary

Input channel parallelism

Output

- Used Im2col for sequential access
- Needs 41 operations
 to store 1 output
- Full utilization: increasing calls (no stationarity).

innermost loop over the pixel (with all the input channel)

leveraging spatial connection among PEs to make the final output

Output channel parallelism

- Used Im2col and direct convolution
- Needs 73 operations to store 16 outputs
- Full utilization limits MAC pipelining.

innermost loop iterates over the window

16 independent PEs (one per filter)

Weight parallelism

Output

- Assigns each weight to a distinct PE.
- 9 PEs perform dot products, while others load inputs or sum partial outputs.
- For the first output 7 operations are needed, then just other 3 for the following ones.

innermost loop slide over the single-channel input window

direct convolution

Results

Energy and latency analysis

Version	Memory (µJ)	CPU (µJ)	CGRA (µJ)	Total (µJ)
CPU	43	57	0	101
IM2Col-IP	62	14	21	96
Conv-OP	29	0.093	22	52
IM2Col-OP	28	0.871	21	49
WP	14	0	16	30

Version	CPU (ms)	CGRA (ms)	Total (ms)
CPU	63.0	0.0	63.4
IM2Col-IP	20.0	15.0	35.4
Conv-OP	0.102	12.0	12.5
IM2Col-OP	0.95	11.0	12.4
WP	0.0	6.0	6.4

- All strategies show similar CGRA energy, while the memory use is the most discriminative factor.
- Frequent Im2col increases latency.
- WP: best latency and memory energy
 - Larger input size allows higher reuse of the loaded weights

- Weight Parallelism (WP)
 - Best latency
 - Best energy
 - Most robust
- CGRA improvements guidelines:
 - □ ISA extension: MAC instruction, explicit load/store increment, HW loops
 - □ Data reuse: Increase number of registers per PE
 - □ **Parallelism**: Using interleaved memory

Thank you!

Davide Schiavone

EPFL - Embedded Systems Laboratory davide.schiavone@epfl.ch