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Motivation
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ML on the Edge

● Growing Demand for CNNs in edge 
devices domain

● Needed for low-power, 
high-performance, and highly 
reconfigurable solutions

Accelerators

● ASIC offer zero reconfigurability
● GPUs consume significant 

power and occupy large area
● FPGA has high latency for 

reconfiguration time

CGRAs

● Programmable hardware
● Low latency for 

reconfiguration time



Motivation
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How do CNNs perform on time-multiplexed, small, 
ultra-low-power CGRAs?

→ Studying different mapping strategies on an 
Open-Source CGRA



HɛɛPsilon: X-HEEP + OpenEdgeCGRA



X-HEEP: Ultra-Low-Power Host Platform
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OpenEdgeCGRA
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● 4x4 grid of Processing Elements (PEs) 
interconnected in a torus arrangement.

● Each PE includes
✓ An ALU
✓ Register files (4 + 1 × 32 b)
✓ Private instruction memory (32 inst)
and executes instructions sequentially.

● Each column includes a DMA r/w port

● Supports diverse kernels with arithmetic, 
logic, shifts, and conditional operations. 
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Technology TSMC 65LP nm CMOS

Area 2x3 mm2

Voltage range 0.8 V - 1.2 V

Frequency range
32 KHz - 170MHz/470 MHz 

(0.8V/1.2V)

Power range
7.7 mW (170MHz, 0.8V) - 

48.1 mW (470 MHz, 1.2 V)

HEEPocrates: First Silicon Prototype



Methods



● Used HWC format for 
data organization.

● Ensures sequential 
memory accesses.

● Requires additional 
memory

IM2COL technique
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Direct convolution
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● Used CHW format for 
data organization.

● More overhead when 
transitioning to a new 
output row.

● Does not require 
additional memory



Three different mappings methods have been developed:
● Input channel parallelism

○ No stationarity, assign each PE a different input channel

● Output channel parallelism
○ Output stationary, assign each PE a different output channel

● Weight parallelism
○ Weight stationary

Mappings explored
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Input channel parallelism
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● Used Im2col for 
sequential access

● Needs 41 operations 
to store 1 output

● Full utilization: 
increasing calls
(no stationarity). 

innermost loop over the 
pixel (with all the input 
channel)
leveraging spatial 
connection among PEs 
to make the final output



Output channel parallelism
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● Used Im2col and 
direct convolution

● Needs 73 operations
to store 16 outputs

● Full utilization limits 
MAC pipelining.

innermost loop iterates 
over the window
16 independent PEs 
(one per filter)



● Assigns each weight 
to a distinct PE.

● 9 PEs perform dot 
products, while others 
load inputs or sum 
partial outputs.

● For the first output 7 
operations are 
needed, then just 
other 3 for the 
following ones.

innermost loop slide over 
the single-channel input 
window
direct convolution

Weight parallelism
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Results



Energy and latency analysis
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● All strategies show similar CGRA energy, 
while the memory use is the most 
discriminative factor.

● Frequent Im2col increases latency.

● WP: best latency and memory energy

○ Larger input size allows higher 
reuse of the loaded weights



Conclusion
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● Weight Parallelism (WP)
✓ Best latency
✓ Best energy
✓ Most robust

● CGRA improvements guidelines: 
❑ ISA extension: MAC instruction, explicit load/store increment, HW loops
❑ Data reuse: Increase number of registers per PE
❑ Parallelism: Using interleaved memory
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